skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bandopadhyay, Ananya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The next generation of ground-based interferometric gravitational wave detectors will observe mergers of black holes and neutron stars throughout cosmic time. A large number of the binary neutron star merger events will be observed with extreme high fidelity, and will provide stringent constraints on the equation of state of nuclear matter. In this paper, we investigate the systematic improvement in the measurability of the equation of state with increase in detector sensitivity by combining constraints obtained on the radius of a 1.4 M neutron star from a simulated source population. Since the measurability of the equation of state depends on its stiffness, we consider a range of realistic equations of state that span the current observational constraints. We show that a single 40 km Cosmic Explorer detector can pin down the neutron star radius for a soft, medium and stiff equation of state with a precision of 10 m within a decade, whereas the current generation of ground-based detectors like the Advanced LIGO-Virgo network would take O ( 10 5 ) years to do so for a soft equation of state. 
    more » « less
  2. Abstract Some electromagnetic outbursts from the nuclei of distant galaxies have been found to repeat on months-to-years timescales, and each of these sources can putatively arise from the accretion flares generated through the repeated tidal stripping of a star on a bound orbit about a supermassive black hole (SMBH), i.e., a repeating partial tidal disruption event (rpTDE). Here, we test the rpTDE model through analytical estimates and hydrodynamical simulations of the interaction between a range of stars, which differ from one another in mass and age, and an SMBH. We show that higher-mass (≳1M), evolved stars can survive many (≳10−100) encounters with an SMBH while simultaneously losingfew× 0.01M, resulting in accretion flares that are approximately evenly spaced in time with nearly the same amplitude, quantitatively reproducing ASASSN-14ko. We also show that the energy imparted to the star via tides can lead to a change in its orbital period that is comparable to the observed decay in the recurrence time of ASASSN-14ko’s flares, P ̇ 0.0026 . Contrarily, lower-mass and less-evolved stars lose progressively more mass and produce brighter accretion flares on subsequent encounters for the same pericenter distances, leading to the rapid destruction of the star and cessation of flares. Such systems cannot reproduce ASASSN-14ko-like transients, but are promising candidates for recreating events such as AT2020vdq, which displayed a second and much brighter outburst compared to the first. Our results imply that the lightcurves of repeating transients are tightly coupled with stellar type. 
    more » « less
  3. Abstract A star completely destroyed in a tidal disruption event (TDE) ignites a luminous flare that is powered by the fallback of tidally stripped debris to a supermassive black hole (SMBH) of massM. We analyze two estimates for the peak fallback rate in a TDE, one being the “frozen-in” model, which predicts a strong dependence of the time to peak fallback rate,tpeak, on both stellar mass and age, with 15 days ≲tpeak≲ 10 yr for main sequence stars with masses 0.2 ≤M/M≤ 5 andM= 106M. The second estimate, which postulates that the star is completely destroyed when tides dominate the maximum stellar self-gravity, predicts thattpeakis very weakly dependent on stellar type, with t peak = 23.2 ± 4.0 days M / 10 6 M 1 / 2 for 0.2 ≤M/M≤ 5, while t peak = 29.8 ± 3.6 days M / 10 6 M 1 / 2 for a Kroupa initial mass function truncated at 1.5M. This second estimate also agrees closely with hydrodynamical simulations, while the frozen-in model is discrepant by orders of magnitude. We conclude that (1) the time to peak luminosity in complete TDEs is almost exclusively determined by SMBH mass, and (2) massive-star TDEs power the largest accretion luminosities. Consequently, (a) decades-long extra-galactic outbursts cannot be powered by complete TDEs, including massive-star disruptions, and (b) the most highly super-Eddington TDEs are powered by the complete disruption of massive stars, which—if responsible for producing jetted TDEs—would explain the rarity of jetted TDEs and their preference for young and star-forming host galaxies. 
    more » « less
  4. Abstract Gravitational-wave observations by the laser interferometer gravitational-wave observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A , given the infrastructure in which they exist and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped cosmic explorer (CE) observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein telescope with 10 km arms in Europe. We use a set of science metrics derived from the top priorities of several funding agencies to characterize the science capabilities of different networks. The presence of one or two A observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy (MMA) and precision measurement of the Hubble parameter. Two CE observatories are indispensable for achieving precise localization of binary neutron star events, facilitating detection of electromagnetic counterparts and transforming MMA. Their combined operation is even more important in the detection and localization of high-redshift sources, such as binary neutron stars, beyond the star-formation peak, and primordial black hole mergers, which may occur roughly 100 million years after the Big Bang. The addition of the Einstein Telescope to a network of two CE observatories is critical for accomplishing all the identified science metrics including the nuclear equation of state, cosmological parameters, the growth of black holes through cosmic history, but also make new discoveries such as the presence of dark matter within or around neutron stars and black holes, continuous gravitational waves from rotating neutron stars, transient signals from supernovae, and the production of stellar-mass black holes in the early Universe. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A observatories. 
    more » « less